Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Sci Rep ; 14(1): 8039, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580725

RESUMEN

This study aimed to characterize the antimicrobial resistance (AMR) and virulence profiles of 67 Escherichia coli isolates obtained from faecal samples of 77 wild mammals from 19 different species, admitted in two rescue and rehabilitation centers in Costa Rica. It was possible to classify 48% (n = 32) of the isolates as multidrug-resistant, and while the highest resistance levels were found towards commonly prescribed antimicrobials, resistance to fluoroquinolones and third generation cephalosporins were also observed. Isolates obtained from samples of rehabilitated animals or animals treated with antibiotics were found to have significantly higher AMR levels, with the former also having a significant association with a multidrug-resistance profile. Additionally, the isolates displayed the capacity to produce α-haemolysins (n = 64, 96%), biofilms (n = 51, 76%) and protease (n = 21, 31%). Our results showed that AMR might be a widespread phenomenon within Costa Rican wildlife and that both free-ranging and rehabilitated wild mammals are potential carriers of bacteria with important resistance and virulence profiles. These results highlight the need to study potential sources of resistance determinants to wildlife, and to determine if wild animals can disseminate resistant bacteria in the environment, potentially posing a significant threat to public health and hindering the implementation of a "One Health" approach.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Costa Rica , Salud Pública , Farmacorresistencia Bacteriana , Mamíferos , Animales Salvajes/microbiología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Antibacterianos/farmacología , Bacterias , Centros de Rehabilitación
2.
Microbiol Spectr ; : e0407823, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534121

RESUMEN

Parasiticide fungi are considered an accurate, sustainable, and safe solution for the biocontrol of animal gastrointestinal (GI) parasites. This research provides an initial characterization of the virulence of the native parasiticide fungus Mucor circinelloides (FMV-FR1) and an assessment of its impact on birds' gut microbes. The genome of this fungus was sequenced to identify the genes coding for virulence factors. Also, this fungus was checked for the phenotypic expression of proteinase, lecithinase, DNase, gelatinase, hemolysin, and biofilm production. Finally, an in vivo trial was developed based on feeding M. circinelloides spores to laying hens and peacocks three times a week. Bird feces were collected for 3 months, with total genomic DNA being extracted and subjected to long-read 16S and 25S-28S sequencing. Genes coding for an iron permease (FTR1), iron receptors (FOB1 and FOB2), ADP-ribosylation factors (ARFs) (ARF2 and ARF6), and a GTPase (CDC42) were identified in this M. circinelloides genome. Also, this fungus was positive only for lecithinase activity. The field trial revealed a fecal microbiome dominated by Firmicutes and Proteobacteria in laying hens, and Firmicutes and Bacteroidetes in peacocks, whereas the fecal mycobiome of both bird species was mainly composed of Ascomycetes and Basidiomycetes fungi. Bacterial and fungal alpha-diversities did not differ between sampling time points after M. circinelloides administrations (P = 0.62 and P = 0.15, respectively). Although findings from this research suggest the lack of virulence of this M. circinelloides parasiticide isolate, more complementary in vitro and in vivo research is needed to conclude about the safety of its administration to birds, aiming at controlling their GI parasites.IMPORTANCEA previous study revealed that the native Mucor circinelloides isolate (FMV-FR1) can develop parasiticide activity toward coccidia oocysts, one of the most pathogenic GI parasites in birds. However, ensuring its safety for birds is of utmost importance, namely by studying its virulence profile and potential effect on commensal gut microbes. This initial study revealed that although this M. circinelloides isolate had genes coding for four types of virulence factors-iron permease, iron receptors, ADP-ribosylation factors, and GTPase-and only expressed phenotypically the enzyme lecithinase, the administration of its spores to laying hens and peacocks did not interfere with the abundances and diversities of their gut commensal bacteria and fungi. Although overall results suggest the lack of virulence of this M. circinelloides isolate, more complementary research is needed to conclude about the safety of its administration to birds in the scope of parasite biocontrol programs.

3.
BMC Vet Res ; 20(1): 63, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38388939

RESUMEN

BACKGROUND: The combined application of predatory fungi and antiparasitic drugs is a sustainable approach for the integrated control of animal gastrointestinal (GI) parasites. However, literature addressing the possible interference of antiparasitic drugs on the performance of these fungi is still scarce. This research aimed to assess the in vitro susceptibility of six native coccidicidal fungi isolates of the species Mucor circinelloides and one Mucor lusitanicus isolate to several antiparasitic drugs commonly used to treat GI parasites' infections in birds, namely anthelminthics such as Albendazole, Fenbendazole, Levamisole and Ivermectin, and anticoccidials such as Lasalocid, Amprolium and Toltrazuril (drug concentrations of 0.0078-4 µg/mL), using 96-well microplates filled with RPMI 1640 medium, and also on Sabouraud Agar (SA). RESULTS: This research revealed that the exposition of all Mucor isolates to the tested anthelminthic and anticoccidial drug concentrations did not inhibit their growth. Fungal growth was recorded in RPMI medium, after 48 h of drug exposure, as well as on SA medium after exposure to the maximum drug concentration. CONCLUSIONS: Preliminary findings from this research suggest the potential compatibility of these Mucor isolates with antiparasitic drugs for the integrated control of avian intestinal parasites. However, further in vitro and in vivo studies are needed to confirm this hypothesis.


Asunto(s)
Antiparasitarios , Mucor , Animales , Antiparasitarios/farmacología , Ivermectina/farmacología , Albendazol
4.
Genes (Basel) ; 14(9)2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37761817

RESUMEN

Faecal Microbiota Transplantation (FMT) is a promising strategy for modulating the gut microbiome. We aimed to assess the effect of the oral administration of capsules containing lyophilised faeces on dogs with diarrhoea for 2 months as well as evaluate their long-term influence on animals' faecal consistency and intestinal microbiome. This pilot study included five dogs: two used as controls and three with diarrhoea. Animals were evaluated for four months by performing a monthly faecal samples collection and physical examination, which included faecal consistency determination using the Bristol scale. The total number of viable bacteria present in the capsules was quantified and their bacterial composition was determined by 16S rRNA gene sequencing, which was also applied to the faecal samples. During the assay, no side effects were reported. Animals' faecal consistency improved and, after ending capsules administration, Bristol scale values remained stable in two of the three animals. The animals' microbiome gradually changed toward a composition associated with a balanced microbiota. After FMT, a slight shift was observed in its composition, but the capsules' influence remained evident during the 4-month period. Capsules administration seems to have a positive effect on the microbiota modulation; however, studies with more animals should be performed to confirm our observations.


Asunto(s)
Microbioma Gastrointestinal , Perros , Animales , Proyectos Piloto , ARN Ribosómico 16S/genética , Heces , Diarrea
5.
Life (Basel) ; 13(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37629495

RESUMEN

Due to poisoning and decline in the food resources of Eurasian vultures, there has been a rise in the number of Griffon (Gyps fulvus) and Cinereous vultures (Aegypius monachus) needing veterinary care. In captivity, vultures often develop oral and other infectious diseases which can affect their survival and the probability of reintroduction in the wild. Therefore, it is important to characterize relevant microbial species present in the oral cavity of vultures, such as Mucor spp. In this work, seven Mucor spp. isolates previously obtained from Gyps fulvus and Aegypius monachus oral swabs collected at two rehabilitation centers in Portugal were characterized regarding their pathogenic enzymatic profile and antimicrobial activity. Isolates were identified by macro and microscopic observation, and PCR and ITS sequencing. Their antimicrobial activity was determined using a collection of pathogenic bacteria and two yeast species. Results showed that 86% of the isolates produced α-hemolysis, 71% expressed DNase, 57% produce lecithinase and lipase, 29% expressed gelatinase, and 29% were biofilm producers. Four isolates showed inhibitory activity against relevant human and veterinary clinical isolates, including Escherichia coli, Enterococcus faecium, Neisseria zoodegmatis, and Staphylococcus aureus. In conclusion, accurate management programs should consider the benefits and disadvantages of Mucor spp. presence in the oral mucosa.

6.
BMC Vet Res ; 19(1): 76, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291542

RESUMEN

BACKGROUND: In dogs, the most frequently reported mycosis associated with Aspergillus spp. are respiratory infections. Systemic aspergillosis is uncommon, with reported cases been associated with several Aspergillus species. Aspergillus terreus species complex are ubiquitous organisms, unfrequently associated with local or systemic disease in animals and humans, and treatment of osteomyelitis caused by this species is usually unfavorable. CASE PRESENTATION: This case report describes the case of a 5-year-old dog, referred to the Veterinary Hospital of the Faculty of Veterinary Medicine of the University of Lisbon, Portugal, with a history of lameness of the right thoracic limb. Radiographs and CT scan revealed two different lesions on right humerus and radio, which were biopsied. The samples collected were submitted to cytological and histopathological evaluation and bacterial and mycological culture. Environmental samples, including of the surgery room and of the biopsy needle were also evaluated for the presence of fungi. Regarding biopsy samples, bacterial culture was negative, but mycological analysis originated a pure culture of a fungal species later identified as Aspergillus terreus by Sanger sequencing. Results were compatible with histopathologic examination, which revealed periosteal reaction and invasion of hyphae elements. Also, mycological analysis of both environmental samples evaluated were negative. The virulence profile of the fungal isolate was phenotypically characterized using specific media, allowing to reveal its ability to produce several enzymes involved in its pathogenicity, namely lipase, hemolysin and DNAse, corresponding to a Virulence Index (V. Index.) of 0.43. The patient was submitted to itraconazole therapy for 8 weeks. After 3 weeks, the patient showed significant clinical improvement, and after 6 weeks no radiographic signs were observed. CONCLUSIONS: Antifungal therapy with itraconazole can contribute to the remission of canine infections promoted by Aspergillus terreus complex with a relevant V. Index.


Asunto(s)
Enfermedades de los Perros , Osteomielitis , Humanos , Perros , Animales , Antifúngicos/uso terapéutico , Itraconazol/uso terapéutico , Aspergillus , Osteomielitis/tratamiento farmacológico , Osteomielitis/veterinaria , Enfermedades de los Perros/tratamiento farmacológico
7.
Antibiotics (Basel) ; 12(5)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37237697

RESUMEN

Diabetic foot ulcers (DFU) are a major complication of diabetes mellitus and a public health concern worldwide. The ability of P. aeruginosa to form biofilms is a key factor responsible for the chronicity of diabetic foot infections (DFIs) and frequently associated with the presence of persister cells. These are a subpopulation of phenotypic variants highly tolerant to antibiotics for which new therapeutic alternatives are urgently needed, such as those based on antimicrobial peptides. This study aimed to evaluate the inhibitory effect of nisin Z on P. aeruginosa DFI persisters. To induce the development of a persister state in both planktonic suspensions and biofilms, P. aeruginosa DFI isolates were exposed to carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ciprofloxacin, respectively. After RNA extraction from CCCP-induced persisters, transcriptome analysis was performed to evaluate the differential gene expression between the control, persisters, and persister cells exposed to nisin Z. Nisin Z presented a high inhibitory effect against P. aeruginosa persister cells but was unable to eradicate them when present in established biofilms. Transcriptome analysis revealed that persistence was associated with downregulation of genes related to metabolic processes, cell wall synthesis, and dysregulation of stress response and biofilm formation. After nisin Z treatment, some of the transcriptomic changes induced by persistence were reversed. In conclusion, nisin Z could be considered as a potential complementary therapy for treating P. aeruginosa DFI, but it should be applied as an early treatment or after wound debridement.

8.
Microorganisms ; 11(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37110376

RESUMEN

The world population's significant increase has promoted a higher consumption of poultry products, which must meet the specified demand while maintaining their quality and safety. It is well known that conventional antimicrobials (antibiotics) have been used in livestock production, including poultry, as a preventive measure against or for the treatment of infectious bacterial diseases. Unfortunately, the use and misuse of these compounds has led to the development and dissemination of antimicrobial drug resistance, which is currently a serious public health concern. Multidrug-resistant bacteria are on the rise, being responsible for serious infections in humans and animals; hence, the goal of this review is to discuss the consequences of antimicrobial drug resistance in poultry production, focusing on the current status of this agroeconomic sector. Novel bacterial control strategies under investigation for application in this industry are also described. These innovative approaches include antimicrobial peptides, bacteriophages, probiotics and nanoparticles. Challenges related to the application of these methods are also discussed.

9.
Antibiotics (Basel) ; 12(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36978314

RESUMEN

Antimicrobial resistance is a public health threat with an increasing expression in low- and middle-income countries such as Cape Verde. In this country, there is an overpopulation of dogs, which may facilitate the spread of resistant bacteria, including extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae. To clarify the role of dogs as reservoirs for the dissemination of this bacterial group, 100 rectal swab samples were collected from confined (n = 50) and non-confined (n = 50) dogs in Santiago and Boa Vista Islands, Cape Verde. These were analyzed using conventional bacteriological techniques for the detection of ESBL-producing Enterobacteriaceae and characterization of their pathogenic and resistance profiles. Twenty-nine samples displayed ESBL-positive bacteria, from which 48 ESBL-producing isolates were obtained and mostly identified as Escherichia coli. Multiple antimicrobial resistance indexes ranged from 0.18 to 0.70 and half of the isolates were classified as multidrug-resistant. Isolates were capable of producing relevant virulence factors, including biofilm, showing virulence indexes between 0.29 and 0.71. As such, dogs in Cape Verde may act as reservoirs of resistant bacteria, including pathogenic and zoonotic species, representing a public health concern. Although further investigation is needed, this study proposes the periodical analysis of dogs' fecal samples to monitor resistance dissemination in the country, in a One-Health perspective.

10.
Antibiotics (Basel) ; 12(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36978334

RESUMEN

Periodontal disease is a relevant oral disease in dogs and nisin-biogel has been previously proposed to be used in its control. Enterococci, as inhabitants of the oral cavity with a high genetic versatility, are a reliable bacterial model for antimicrobial studies. Our goal was to evaluate the in vivo influence of the long-term dental application of the nisin-biogel on the virulence and antimicrobial signatures of canine oral enterococci. Twenty dogs were randomly allocated to one of two groups (treatment group-TG with nisin-biogel dental application, or control group-CG without treatment) and submitted to dental plaque sampling at day 0 and after 90 days (T90). Samples were processed for Enterococcus spp. isolation, quantification, identification, molecular typing and antimicrobial and virulence characterization. From a total of 140 enterococci, molecular typing allowed us to obtain 70 representative isolates, mostly identified as E. faecalis and E. faecium. No significant differences (p > 0.05) were observed in the virulence index of the isolates obtained from samples collected from the TG and CG at T90. At T90, a statistically significant difference (p = 0.0008) was observed in the antimicrobial resistance index between the isolates from the TC and CG. Oral enterococci were revealed to be reservoirs of high resistant and virulent phenotypes.

11.
Life (Basel) ; 13(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36836861

RESUMEN

Diabetes mellitus (DM) patients frequently develop diabetic foot ulcers (DFU) which are generally infected by a community of microorganisms, mainly Staphylococcus aureus and Pseudomonas aeruginosa. These bacteria exhibit a multi-drug resistance profile and biofilm-forming ability which represent a hurdle in the treatment of diabetic foot infections (DFI). We aimed to evaluate the potential of Nisin Z, an antimicrobial peptide (AMP), as an alternative treatment for severe DFI. Nisin Z shows antibacterial activity against Gram-positive and Gram-negative bacteria and an increased antibacterial effect against Gram-negatives when added to EDTA. As such, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) were determined for Nisin Z, Nisin Z + EDTA (0.4%), and Nisin Z + EDTA incorporated into guar gum, in order to test its efficacy against S. aureus and P. aeruginosa isolated from the same DFU. Results showed that Nisin Z added to the chelation agent EDTA displayed higher antibacterial and bacteriostatic efficacy against mono and dual co-cultures of S. aureus and P. aeruginosa, and higher antibiofilm efficiency against monocultures. Nisin Z was moderately cytotoxic at 200 µg/mL. Prospect in vivo studies are needed to confirm the potential of Nisin Z supplemented with EDTA to be used as a complement to conventional antibiotic therapy for severe DFI.

13.
AIMS Microbiol ; 9(4): 612-646, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38173971

RESUMEN

This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.

14.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203579

RESUMEN

Diabetic foot infections (DFIs) are frequently linked to diabetic-related morbidity and death because of the ineffectiveness of conventional antibiotics against multidrug-resistant bacteria. Pexiganan and nisin A are antimicrobial peptides (AMPs), and their application may complement conventional antibiotics in DFI treatment. A collagen 3D model, previously established to mimic a soft-tissue collagen matrix, was used to evaluate the antibacterial efficacy of a guar gum gel containing pexiganan and nisin alone and combined with three antimicrobials toward the biofilms of Staphylococcus aureus and Pseudomonas aeruginosa isolated from infected foot ulcers. Antimicrobials and bacterial diffusion were confirmed by spot-on-lawn and bacterial growth by bacterial count (cfu/mL). Our main conclusion was that the dual-AMP biogel combined with gentamicin, clindamycin, or vancomycin was not able to significantly reduce bacterial growth or eradicate S. aureus and P. aeruginosa DFI isolates. We further reported an antagonism between dual-AMP and dual-AMP combined with antibiotics against S. aureus.


Asunto(s)
Enfermedades Transmisibles , Diabetes Mellitus , Pie Diabético , Polineuropatías , Enfermedades de la Piel , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pie Diabético/tratamiento farmacológico , Staphylococcus aureus , Colágeno
15.
Pharmaceutics ; 14(12)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36559210

RESUMEN

Periodontal disease (PD) is a common oral disease in dogs. Recent in vitro research revealed that nisin−biogel is a promising compound for canine PD control. In this work, a clinical trial was developed to assess the in vivo efficacy of nisin−biogel in dogs by determining the dental plaque index (DPI), gingivitis index (GI), and periodontal pocket depth (PPD) after dental administration. The biogel's influence on aerobic bacteria counts was also evaluated, as well as its acceptance/adverse effects in dogs. Twenty animals were allocated to one of two groups: a treatment group (TG) subjected to a dental topical application of nisin−biogel for 90 days and a control group (CG) with no treatment. Besides daily monitoring, on day 1 (T0) and at the end of the assay (T90), animals were subjected to blood analysis, periodontal evaluation, dental plaque sampling, scaling, and polishing. Statistical analysis with mixed models showed a significant reduction in mean PPD (estimate = −0.371, p-value < 0.001) and DPI (estimate = −0.146, p-value < 0.05) in the TG animals at T90. A reduction in the GI (estimate = −0.056, p-value > 0.05) was also observed but with no statistical significance. No influence on total bacterial counts was observed, and no adverse effects were detected. The nisin−biogel was revealed to be a promising compound for canine PD control.

16.
Antibiotics (Basel) ; 11(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551385

RESUMEN

Periodontal disease (PD) is one of the most prevalent oral inflammatory diseases in dogs. PD onset begins with the formation of a polymicrobial biofilm (dental plaque) on the surface of the teeth, followed by a local host inflammatory response. To manage this disease, several procedures focusing on the prevention and control of dental plaque establishment, as well as on the prevention of local and systemic PD-related consequences, are essential. The removal of dental plaque and the inhibition of its formation can be achieved by a combination of dental hygiene homecare procedures including tooth brushing, the application of different oral products and the use of specific diet and chew toys, and regular professional periodontal procedures. Additionally, in some cases, periodontal surgery may be required to reduce PD progression. Associated with these measures, host modulation therapy, antimicrobial therapy, and other innovative therapeutic options may be useful in PD management. Moreover, PD high prevalence and its relation with potential local and systemic consequences reinforce the need for investment in the development of new preventive measures, treatments, and oral procedures to improve the control of this disease in dogs. Knowledge on the specific guidelines and diversity of the available products and procedures are fundamental to apply the most adequate treatment to each dog with PD.

17.
Antibiotics (Basel) ; 11(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35884226

RESUMEN

The most prevalent microorganism in diabetic foot infections (DFI) is Staphylococcus aureus, an important multidrug-resistant pathogen. The antimicrobial peptide nisin is a promising compound for DFI treatment, being effective against S. aureus. However, to avoid the selection of resistant mutants, correct drug therapeutic doses must be established, being also important to understand if nisin subinhibitory concentrations (subMIC) can potentiate resistant genes transfer between clinical isolates or mutations in genes associated with nisin resistance. The mutant selection window (MSW) of nisin was determined for 23 DFI S. aureus isolates; a protocol aiming to prompt vanA horizontal transfer between enterococci to clinical S. aureus was performed; and nisin subMIC effect on resistance evolution was assessed through whole-genome sequencing (WGS) applied to isolates subjected to a MEGA-plate assay. MSW ranged from 5-360 µg/mL for two isolates, from 5-540 µg/mL for three isolates, and from 5-720 µg/mL for one isolate. In the presence of nisin subMIC values, no transconjugants were obtained, indicating that nisin does not seem to promote vanA transfer. Finally, WGS analysis showed that incubation in the presence of nisin subMIC did not promote the occurrence of significant mutations in genes related to nisin resistance, supporting nisin application to DFI treatment.

18.
Vet Sci ; 9(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35737336

RESUMEN

BACKGROUND: Pyometra is a diestrual chronic disease frequently associated with Escherichia coli. Initial pyometra treatment involves empiric antimicrobial therapy whose suitability should be confirmed by antimicrobial susceptibility testing. Antimicrobial resistance is a major health issue for veterinary medicine, rendering surveillance studies essential. Our goal was to determine the susceptibility profile of E. coli isolates obtained from healthy and pyometra-presenting dogs and to compare the application of different antimicrobial susceptibility guidelines. METHODS: The antimicrobial susceptibility profile (ASP) of 74 E. coli isolates was determined by disk diffusion, using six antimicrobials commonly used in veterinary medicine. Profiles were assessed by CLSI VET01S, CLSI M100 and EUCAST guidelines. ß-lactamases-encoding genes blaTEM, blaSHV and blaOXA were detected by multiplex PCR. Biofilm production ability was evaluated by pellicle formation assays in Luria-Bertani medium. RESULTS: Variations in the resistance frequency were observed for amoxicillin/clavulanic acid, cephalexin and cefotaxime (29.7-54.1%, 10.8-16.2% and 1.4-4.1%, respectively). Results varied slightly between clinical and commensal isolates, as well as their biofilm-forming ability. Genes blaTEM, blaSHV and blaOXA were detected in 25.5%, 11.8% and 9.8% of isolates, respectively. CONCLUSIONS: Results show the importance of ASP determination in veterinary isolates and the need for using standardized and validated testing methods and harmonized interpretive criteria.

19.
PeerJ ; 10: e12911, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295556

RESUMEN

Background: Wildlife has been recently recognized as an environmental reservoir for antimicrobial resistance (AMR). However, less information on this topic is available in animals released back into the wild after rehabilitation in wildlife facilities, compared with studies performed exclusively in captive or free-ranging wildlife. This study aimed to evaluate the potential influence of captivity and/or treatment while in captivity of wild sloths on the AMR and virulence profiles of sloths' Enterobacterales. Methods: Oral and rectal swab samples were collected from 39 two-finger (Choloepus hoffmanni) and three-finger sloths (Bradypus variegatus) of Costa Rica (n = 78) and analyzed using conventional bacteriological techniques. A generalized linear mixed model was applied to estimate the isolates' multiple antimicrobial resistance and virulence indices as a function of animal status. Results: A considerable level of resistance was detected, especially for Citrobacter youngae and Escherichia coli, with 17.5% of isolates classified as multidrug-resistant. Virulence indices of isolates from rehabilitated sloths were significantly higher than the ones from sloths being hand-reared for shorter periods. Conclusions: To our knowledge, this is the first description of sloths' antimicrobial resistant Enterobacterales, suggesting that sloths' rehabilitation and consequent exposure to humans, may promote the selection of bacteria with higher virulence. Ultimately, these bacteria may represent a threat to human and animal health due to their zoonotic potential and AMR and virulence profiles.


Asunto(s)
Perezosos , Animales , Humanos , Antibacterianos/farmacología , Costa Rica , Virulencia , Farmacorresistencia Bacteriana , Animales Salvajes
20.
FEBS Open Bio ; 12(1): 51-70, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34665931

RESUMEN

Vitellogenin (Vg) has been implicated as a central protein in the immunity of egg-laying animals. Studies on a diverse set of species suggest that Vg supports health and longevity through binding to pathogens. Specific studies of honey bees (Apis mellifera) further indicate that the vitellogenin (vg) gene undergoes selection driven by local pathogen pressures. Determining the complete 3D structure of full-length Vg (flVg) protein will provide insights regarding the structure-function relationships underlying allelic variation. Honey bee Vg has been described in terms of function, and two subdomains have been structurally described, while information about the other domains is lacking. Here, we present a structure prediction, restrained by experimental data, of flVg from honey bees. To achieve this, we performed homology modeling and used AlphaFold before using a negative-stain electron microscopy map to restrict, orient, and validate our 3D model. Our approach identified a highly conserved Ca2+ -ion-binding site in a von Willebrand factor domain that might be central to Vg function. Thereafter, we used rigid-body fitting to predict the relative position of high-resolution domains in a flVg model. This mapping represents the first experimentally validated full-length protein model of a Vg protein and is thus relevant for understanding Vg in numerous species. Our results are also specifically relevant to honey bee health, which is a topic of global concern due to rapidly declining pollinator numbers.


Asunto(s)
Proteínas de Insectos , Vitelogeninas , Animales , Abejas , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos/metabolismo , Longevidad , Vitelogeninas/genética , Vitelogeninas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...